DS|POWER SERIES DSP CONTROLLED

3 Phase in / 3 Phase out UPS

SERVICE MANUAL

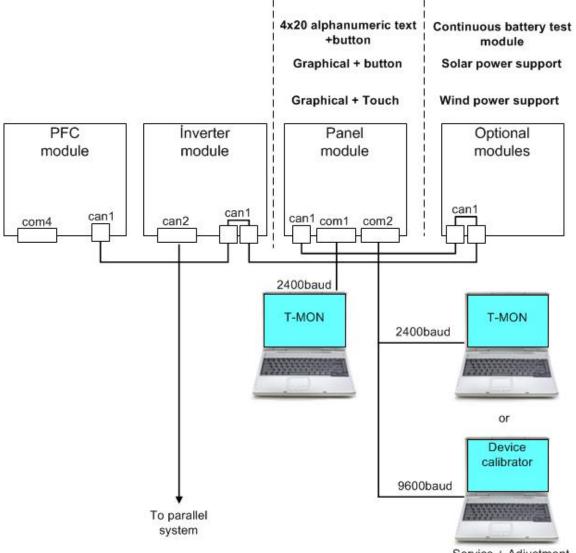
PRELIMINARY

22 May 2013

CONTENT

- <u>General</u>
- Internal modular structure
- <u>Hardware equipment requirements during service</u>
- Block diagram of the UPS
- Alphanumeric control panel
- <u>Graphical control panel</u>
- <u>Taking the UPS from off position to normal operation</u>
- <u>Taking the UPS from normal operation to off position</u>
- Taking the UPS from normal operation to maintenance by-pass position
- <u>Taking the UPS from maintenance by-pass to normal operations</u>
- <u>REPO remote emergency shutdown input</u>
- <u>Display menus of the control panel</u>
- Information about PCB boards
- DS3-INV inverter module main DSP controller board
- DS3-PFC rectifier module main DSP controller board
- DS3-DRV IPM driver board
- DS3-IPW Rectifier input relay board
- DS3-PWR Output relay and by-pass board
- ITC-03 Front panel adaptor board
- IDB-03 İnterface board
- <u>OPT03 Optional interface board</u>
- DSPAN03 Front panel module main DSP controller board
- FP1 LCD panel adaptor board
- DS3-BYP by-pass driver board
- <u>IGDN03 IGBT Driver board</u>
- <u>RS430 RS232 serial communication board</u>
- DS3-PSU main power supply
- <u>CPC-02 DC BUS capacitor charge board</u>
- DS3-LKG1 IGBT leakage sense board
- <u>DS3-PAR Parallel communication board</u>
- Front panel options
- <u>Power supply distrubution</u>
- Firmware update directives

GENERAL

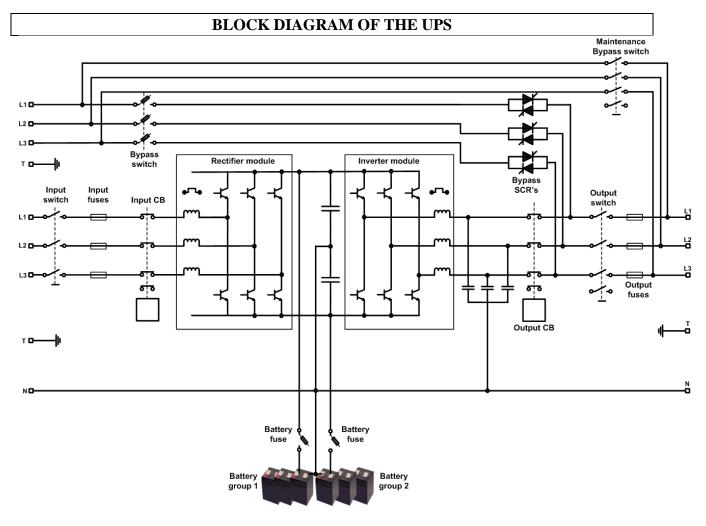

DS|POWER series UPS products are DSP controlled, designed in modular structure ,digital control system provides safe control during operation. Fast DSP controller brings many advantages. There are to many digital setting parameters ,see front panel menus for details

INTERNAL MODULAR STRUCTURE

All control modules and communication between modules are showned on the following figure. As showned on figure all modules are connected to each other by CAN interface bus. There are 4 RS232 serial ports at Standard configuration these are:

- Com1 serial port on Front panel module (only user communication)
- Com2 serial port on Front panel module (service purpose or user port)
- Com3 serial port on Inverter module (only factory usage)
- Com4 serial port on PFC rectifier module (only factory usage)

All adjustment and calibration functions can be done from com2 serial port ,to make adjustments from com3 or com4 but service adaptor is required for this.

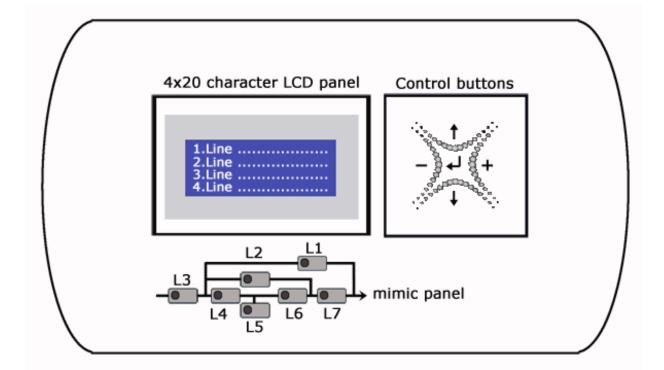


Service + Adjustment

Hardware requirements for service

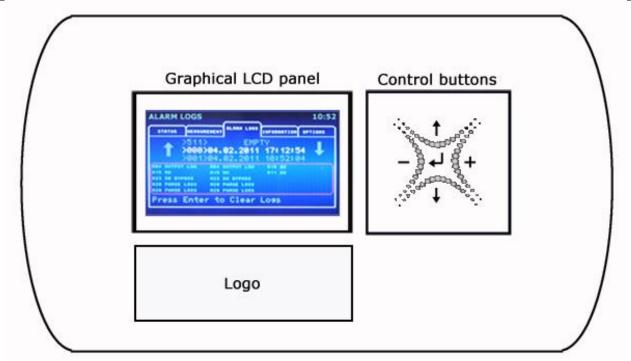
During service the following hardware and test equipment are required. According to service procedure different equipment can be required ,the following list shows complete service equipment.

- a) Oscilloscope
- b) AC-DC multimeter (frequency measurement)
- c) AC-DC Clamp ampermeter
- d) Thermometer (ambient temperature measurement)
- e) Resistive load at 50% power of 1 phase maximum power (for 60000 UPS ,for 0.8 output power factor 8.000 watts load)
- f) 100 ohms/2000 watts DC dummy load (2 amperes)
- g) CC05 RS232 cable
- h) Laptop computer for measurments and calibration
- i) Device calibrator PLUS software (download from our WEB site)
- j) Central service KEY


Topology 1 type UPS

Note:

At some UPS models input fuse and input switch is integrated to each other At some UPS models output fuse and output switch is integrated to each other


ALPHANUMERIC CONTROL PANEL

4X20 Character 4 lines LCD text screen and 5 control buttons option

L1	Maintenance bypass switch on indicator lamp	
L2	Load on bypass indicator lamp	
L3	Input voltage indicator lamp	
L4	Rectifier run pilot lamp	
L5	Battery operation indicator lamp	
L6	Load on UPS indicator lamp	
L7	Output switch on indicator lamp	
-	Main menu options button	
+	Main menu options button	
1	Submenu options button	
↓	Submenu options button	
له	Enter button	

Graphical LCD and 5 control buttons option

At this option there is no mimic lamps the diagram is showned as graphically ,there are 5 control buttons these are:

-	Main menu options button
+	Main menu options button
1	Submenu options button
Ŧ	Submenu options button
₄	Enter button

Taking the UPS from off position to normal operation

- Turn on input switch <1>position
- Turn on by-pass input switch <1>position
- Turn on UPS output switch <1>position
- Turn on the on/off switch <1>position
- Front panel backlight will be ON, by-pass lamp will be ON
- Wait after a delay by-pass lamp will be of and load on inverter lamp will be on Turn on battery switch <1>position
- If there is no any alarm on UPS device is running in normal mode

Taking the UPS from normal operation to off position

- From commands menü transfer the load to by-pass
- Turn off the output switch <0> position (output voltage shutdown)
- Turn off battery switch <0>position
- Turn of the on/off switch <0>position (panel backlight off)
- Turn off the By-pass input switch <0>position
- Turn off input switch <0>position
- Now the UPS is in OFF position

Taking the UPS from normal operation to maintenance position

- From commands menü trasnfer the load to by-pass
- After By-pass lamp on turn on maintenance by-pass switch <1>position
- Turn off battery switch <0>position
- Turn off the on/off switch <0>position
- Turn off the output switch <0>position
- Turn off the By-pass input switch <0>position
- Turn of the input switch <0>position
- All voltages are shutdown inside of the UPS but load is fed from maintenance by-pass line
- UPS is ready for service

Taking the UPS from maintenance by-pass position to normal operation

- At this moment only the maintenance by-pass switch must be on <1>position
- All other switches must be off <0>position
- Turn on the input switch <1> position
- Turn on the By-pass input switch <1>position
- Turn on the output switch <1>position
- Turn on the on/off switch <1>position
- Front panel backlight must be on and you must see MAINTENANCE BYPASS message
- Turn off the maintenance by-pass switch <0>position
- After a delay load on inverter lamp will be on
- Turn on the battery switch <1>position
- If there is no any alarm UPS is running in normal mode

REPO stop input and button

Remote emergency power off input is located on IDB-03 board terminals. The connection from REPO button is provided with 2 cables. If these 2 cables are shorted longer then 1 seconds UPS decides that this is an emergecy shutdown signal so inverter stops ,rectifier stops ,charger stops and load will be shutdown.

A NO contact REPO button must be used if otherwise is noted. Install the REPO button to the remote side from UPS select easy accessable places

DISPLAY MENUS OF THE CONTROL PANEL

Control panel of the UPS have fast DSP controller which manages panel and communication functions.

The functions of the front panel module

- Manages 2 serial RS232 ports
- Manages dry contact alarm relays
- Manages optional interface board
- Drives LCD screen
- Creates messages
- Transfer adjustment parameters to other modules
- Creates graphics for graphical LCD screen
- Sends user commands to other modules
- Saves alarms and log events to log memory
- Sends alarms and faults to manager software on any PC
- Gets all measured values from other modules and shows on screen
- Sens all measured parameters to outside world over RS232 ports
- Manages REPO stop input
- Manages generator set signals
- Controls digital automation
- Manages interactive battery switch
- Provides data for SNMP adaptor
- Provides data for remote monitoring panel
- Provides data for MODBUS adaptor
- Manages sleep mode of the UPS
- Saves UPS labels in permanent memory

3 Front panel options are available:

- 4x20 character LCD alphanumeric text panel with 5 control buttons and mimic lamps
- Graphical LCD panel with 5 buttons
- Graphical LCD touch panel

Details of display menus is different at different options and to much menus are used ,fort his reason each option is decribed at different documents:

Option	Display menus document code
4x20 character LCD panel	Ask document code
Graphical LCD panel	Ask document code
Graphical LCD touch panel	Ask document code

DS3-INV inverter module main DSP controller board

DS3-INV board manages all functions of the inverter module. Over CAN interface this board communicates with the other boards.

Functions of DS3-INV board:

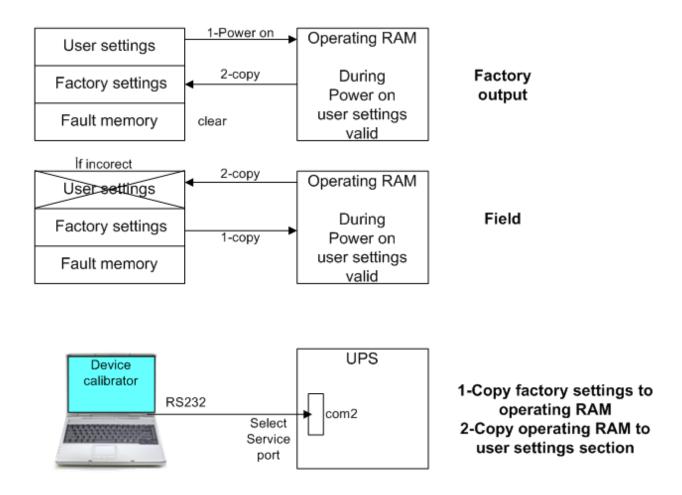
- a) Measures AC By-pass phase voltages and frequency creates alarms according to these measurements
- b) Manages By-pass transfers
- c) Calculates By-pass SCR fireing times and creates drive signals
- d) Controls inverte module PWM signals.
- e) Measures AC inverter output voltages and frequency
- f) Regulates inverter out voltages and frequency
- g) Measures AC UPS output voltages.
- h) Measures DC battery voltages
- i) Creates alarms according to measured DC battery voltage
- j) Calculates the output power as watt and VA.
- k) Calculates load percentage
- 1) Measures load crest factor
- m) Measures AC RMS output currents of the UPS
- n) Creates alarm according to measured AC voltages
- o) Creates alarm according to measured frequencies
- p) Manages output CB
- q) Manages overload times and output short circuit events
- r) Makes RMS calculations for all AC voltages and currents
- s) Saves factory adjustments and manages minmum maximum values
- t) During fault saves all inverter module memory to eeprom

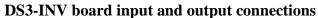
DS3-INV board test points		
TP12 (GND) – D12 cathode	+9.5 volts DC	
TP12 (GND) – TP8	+5 volts DC	
TP12 (GND) – TP11	+3.3 volts DC	
TP12 (GND) – TP15	0 volt DC	
TP16 (GND) – TP13	+5 volts DC	
TP15(AGND) - D16 Diode cathode	+17 volts DC	
TP15(AGND) - U17 pin3	+ 12 volt DC	
TP15(AGND) - TP24	+5 volts DC	
TP15(AGND) - D17 Diode anode	-17 volts DC	
TP15(AGND) - U15 pin 3	-12 volts DC	
TP15(AGND) - TP25	-5 volts DC	

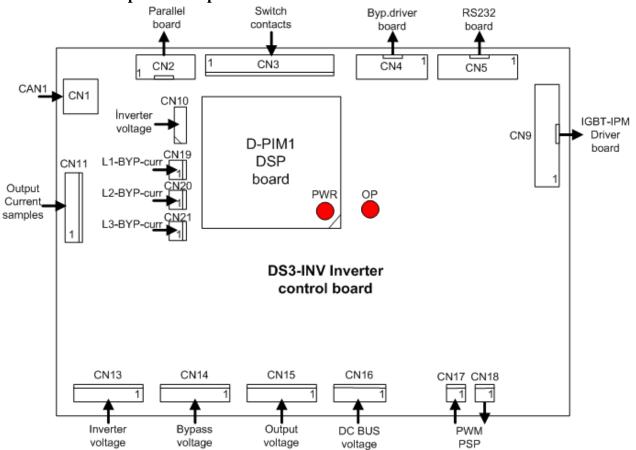
DS3-INV board special components		
D11 LED Operating monitor lamp		
Short on normal		
On-off time equal alarm		
	On time longer fault	
J1 jumper	nper CAN1 line resistor	
J2 jumper	jumper Driver power supply jumper	

DS3-INV board memory management

Eeprom memory have 3 sections:


- User settings
- Factory settings
- Fault memory


In factory at the end of final test, all calibrations and adjustments are saved to User settings section then user settings are copied to factory settings section. If original user settings are changed it is possible to reload factory settings to user settings section.


During power on first inverter module downloads user settings section and uses these adjustments. To return factory settings requires two phases

- 1- Download factory settings section to operating RAM
- 2- Copy operating RAM to user settings section

To move adjustments from one section to other section is possible with by using device calibrator PLUS software.

DS3-INV board connector pin functions and test measurements

CN1 – internal CAN1 communication connector			
1	1 CANL signal in-out Can not measure		
2	2 Isolated 0 volt Can not measure		
3	3 CANH signal in-out Can not measure		

	CN2 – Parallel CAN co	mmunication connector
1	CAN2 RX signal input	Peak to Peak 0 to 5 volt signal
2	CAN2 TX signal output	Peak to Peak 0 to 5 volt signal
3	0 volt	0 volt
4	U2RX signal input	Peak to Peak 0 to 3.3 volt signal
5	U2TX signal output	Peak to Peak 0 to 3.3 volt signal
6	U2_ENABLE signal output	Peak to Peak 0 to 3.3 volt signal
7	0 volt	0 volt
8	+3.3 volts DC output	+3.3 volts DC
9	+5 volts DC output	+5 volts DC
10	0 volt	0 volt

	CN3 – switch and fuse status sense signal connector		
1	Fuse failure sense input	normal 0 volt, blowned 3.3 volts DC	
2	0 volt	0 volt	
3	Output CB positon sense input	CB on 0V -CB off 3.3V DC	
4	0 volt	0 volt	
5	Thermal contact sense input	normal 0V – overtemp 3.3V DC	
6	0 volt	0 volt	
7	Maintenance by-pass switch position sense	Switch on 0V –switch off 3.3V DC	
8	0 volt	0 volt	
9	Output switch position sense input	Switch on 0V-switch off 3.3V DC	
10	0 volt	0 volt	

	CN4 – By-pass driver board connector		
1	Output CB drive output	CB off 0V – CB on +5V DC	
2	DOUT-2 spare out	Not used	
3	DOUT-1 spare out	Not used	
4	0 volt	0 volt	
5	L3 inverter SCR drive out	Not used	
6	L2 inverter SCR drive out	Not used	
7	L1 inverter SCR drive out	Not used	
8	0 volt	0 volt	
9	L3 by-pass SCR drive out	On inverter 0V – on by-pass +5V DC	
10	L2 by-pass SCR drive out	On inverter 0V – on by-pass +5V DC	
11	L1 by-pass SCR drive out	On inverter 0V – on by-pass +5V DC	
12	0 volt	0 volt	
13	+5 volts DC supply out	+5 volts DC	
14	+5 volts DC supply out	+5 volts DC	

	CN5 – RS232 communication port connector		
1	HF power supply output		
2	HF power supply output		
3	0 volt	0 volt	
5	+5 volt DC supply output	+5V DC	
6	0 volt	0 volt	
7	RS232 TX signal output	Peak to Peak 0 to 5 volt signal	
8	Not used		
9	RS232 RX signal input	Peak to Peak 0 to 5 volt signal	

	CN9 – inverter IGBT or IPM driver board connector		
1	IGBT alarm sense input	Normal 0V – alarm 3.3 V DC	
2	Spare digital output	Not used	
3	+8.5 volts DC supply output	+8.5V DC	
4	+8.5 volts DC supply output	+8.5V DC	
5	PWM4L output	Not used	
6	PWM4H output	Not used	
7	0 volt	0 volt	
8	0 volt	0 volt	
9	PWM3L output	Peak to Peak 0 to 5 volts signal	
10	PWM3L output	Peak to Peak 0 to 5 volts signal	
11	PWM3H output	Peak to Peak 0 to 5 volts signal	
12	PWM3H output	Peak to Peak 0 to 5 volts signal	
13	PWM2L output	Peak to Peak 0 to 5 volts signal	

14	PWM2L output	Peak to Peak 0 to 5 volts signal
15	PWM2H output	Peak to Peak 0 to 5 volts signal
16	PWM2H output	Peak to Peak 0 to 5 volts signal
17	PWM1L output	Peak to Peak 0 to 5 volts signal
18	PWM1L output	Peak to Peak 0 to 5 volts signal
19	PWM1H output	Peak to Peak 0 to 5 volts signal
20	PWM1H output	Peak to Peak 0 to 5 volts signal

	CN10 – advanced option board connector		
1	Optional analog input 1		
2	Optional analog input 2		
3	Optional analog input 3		
4	Optional analog input 4		
5	Optional analog input 5		
6	Optional analog input 6		
7	0 volt	0 volt	
8	0 volt	0 volt	
9	Optional digital input	0 to 3.3 volts DC	
10	0 volt	0 volt	

	CN11 – AC output current sense LEM connector		
1	+12 volts DC supply output	+12V DC	
2	-12 volts DC supply output	-12V DC	
3	0 volt	0 volt	
4	L3 output current LEM input	No load 0 volt DC	
5	L2 output current LEM input	No load 0 volt DC	
6	L1 output current LEM input	No load 0 volt DC	

	CN13 – AC inverter output voltage samples connector		
1	Neutral sample	0 volt	
2	Not used		
3	L3 AC inverter output voltage sample	220 volts AC	
4	Not used		
5	L2 AC inverter output voltage sample	220 volts AC	
6	Not used		
7	L1 AC inverter output voltage sample	220 volts AC	

	CN14 – AC By-pass input voltage samples connector		
1	Neutral sample input	0 volt	
2	Not used		
3	L3 AC by-pass input voltage sample	220 volts AC	
4	Not used		
5	L2 AC by-pass input voltage sample	220 volts AC	
6	Not used		
7	L1 AC by-pass input voltage sample	220 volts AC	

	CN15 – AC UPS output voltage samples connector		
1	Neutral sample input	0 volt	
2	Not used		
3	L3 AC output voltage sample	220 volts AC	
4	Not used		
5	L2 AC output voltage sample	220 vols AC	
6	Not used		
7	L1 AC output voltage sample	220 volts AC	

	CN16 – DC BUS voltage samples connector		
1	(-)DC BUS voltage measurement input	-400 volt DC	
2	Not used		
3	DC BUS common input	0 volt	
4	Not used		
5	(+)DC BUS voltage measurement input	+400 volt DC	

	CN17 – HF power supply connector		
1	HF power supply input		
2	HF power supply input		

CN18 – HF power supply connector		
1	HF power supply input	
2	HF power supply input	

DS3-INV board replacement

All voltage and current measurement samples are directly connected to DS3-INV board so during board replacement there is no need any adjustment. Only at non standart models such as 120 V AC output types please give information to factory during board order.

You can use UPS chassis or serial number at order.

Apply the followings:

- a) Take off all fuses of the UPS
- b) Turn off all switches <0>position
- c) Inverter and Rectifier boards like to each other find INV and PFC letters on board and check
- d) Before take of the old board mark all connectors on a paper
- e) Unplug all cable connectors
- f) Take off the old board from plastic holders
- g) Install new board on to the plastic holders
- h) Connect all cable connectors
- i) Check jumpers of the board

DS3-INV board firmware update

DPIM-1 board connected to DS3-INV board contains control software of the inverter module ,if new update is necessary take off DPIM-1 board from DS3-INV board and connect new DPIM-1 board on to the DS3-INV board.

Apply the followings:

- a) Take off all fuses of the UPS
- b) Turn off al switches of the UPS <0>Position
- c) DPIM-1 board is connected on to the DS3-INV board with 4 connectors. Take off DPIM-1 board
- d) Connect new DPIM-1 board on to the DS3-INV board.

According to different applications DS3-INV board

DS3-INV board can be used at every power range of the DS|POWER series UPS ,maybe some factory settings can be different at various applications. The following tables shows all possible applications: By-pass leakage current measurement inputs

	CN19 connector	CN20 connector	CN21 connector
3 transformer by-pass curr.measure	L1 current	L2 current	L3 current
1 transformer by-pass curr measure	Common current	Not used	Not used
No By-pass current measurement	Not used	Not used	Not used

Optional AC voltage measurement inputs

	CN10 soketi
Transformerless UPS	Not used
Transformer UPS	used
Parallel applications	
	CN2 soketi
ONLINE UPS	Not used
Parallel UPS	used

Inverter heatsink temperature sensor

	CN3 pin-5-6
IPM type UPS	Not used
IGBT type UPS	used

Fuse sense inputs

	CN3 pin-1-2
If fuse aux contact is not installed	Not used
If fuse aux contact installed	used

DS3-PFC rectifier controller board

DS3-PFC board controls all rectifier and charger functions of the UPS. From CAN1 bus board communicates with other boards

The functions of the DS3-PFC board:

- a) Measures AC input frequency and voltages
- b) Creates rectifier PWM signals
- c) Controls PFC function (power factor correction)
- d) Reduces AC input current distorsion
- e) Regulates input power factor
- f) Measures DC BUS voltages
- g) Limits the battery charge current
- h) Manages battery test function
- i) Manages boost charge function
- j) Manages battery temperature compansiation
- k) Manages input contactor
- 1) Manages regenerative energy
- m) Manages soft start function
- n) Calculates voltage and current RMS values
- o) Creates input voltage alarms
- p) Creates input frequency alarms
- q) Creates DC BUS alarms
- r) Creates battery alarms
- s) Keeps factory settings at factory settings memory
- t) During system fault copies fault profile to fault profile memory

DS3-PFC Board test points	
TP8 (GND) – D9 cathode	+9.5 volts DC
TP8 (GND) – TP4	+5 volts DC
TP8 (GND) – TP5	+3.3 volts DC
TP8 (GND) – TP9(AGND)	0 volt DC
TP15(GND1) - D10 diode cathode	+10 volts DC
TP15(GND1) - TP17	+5 volts DC
TP9(AGND) - D22 diode cathode	+16 volts DC
TP9(AGND) - U18 pin-3	+12 volts DC
TP9(AGND) - D20 diode cathode	-16 volts DC
TP9(AGND) - U15 pin-3	-12 volts DC
TP9(AGND) - TP22	-5 volts DC
TP9(AGND) - TP23	%5 volts DC

DS3-PFC Board special components		
D3 LED	Short on status normal, on-off equal alarm , long on fault	
J1 jumper	CAN1 line resistor jumper	
J2 jumper Driver supply jumper		

DS3-PFC board replacement

At DS|POWER series UPS devices ,DS3-PFC controller board AC and DC voltage samples are connected directly to the board ,for his reason during board replacement there is no any calibration. But if the UPS is not standart (such as 120 volts AC output type) give information to factory during board order.

All board configurations are saved at the factory output if you are not sure about the configuration ask to factory.

- a) Take off all fuses of the UPS
- b) All switches must be off <0>position
- c) Inverter and PFC controller boards like to each other check the INV and PFC letters on the board
- d) Note same pin numbered sockets before take off
- e) Take off all connectors from the board
- f) Take off old board from plastic holders
- g) Install new board on plastic holders
- h) Connect cable connectors
- i) Check all jumpers

DS3-PFC Board firmware update

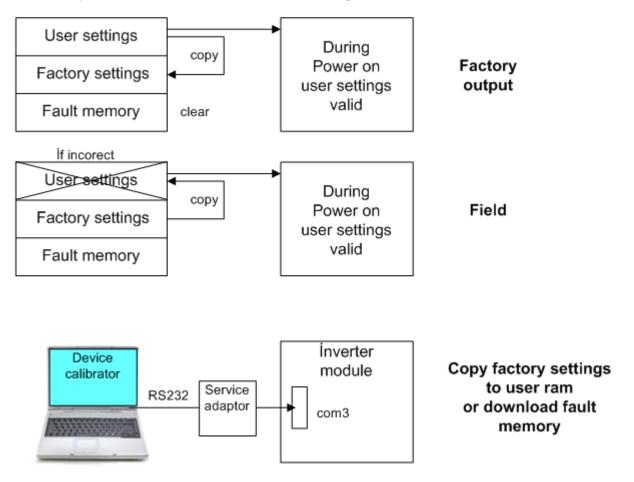
If firmware update required DPIM-1 board with a new software iss required. Take off old DPIM-1 board and connect the new DPIM-1 board on DS3-PFC board.

Do the followings during firmware update

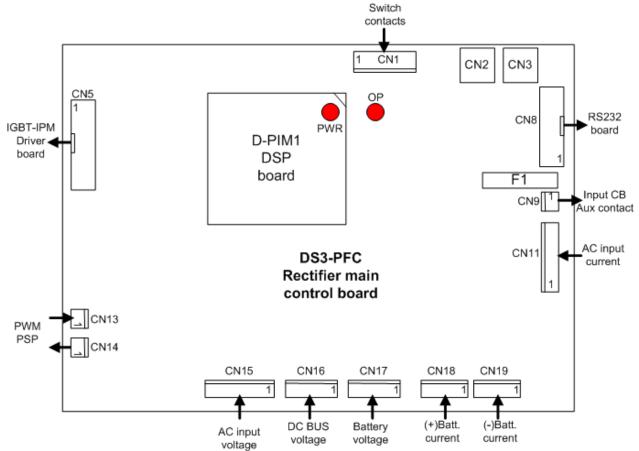
- a) Take off all fuses
- b) Turn off all switches
- c) Take off old DPIM-1 board from DS3-PFC board
- d) Plug new DPIM-1 board on to the DS3-PFC board. Take care to the direction of the DPIM-1 board

DS3-PFC Board memory management

Permanent memory contains 3 sections:


- User parameters
- Factory parameters
- Fault memory

At the factory output all UPS data is recorded to Tescom database system. Factory parameter page is a copy of the user parameters page. If you want to return factory settings you can load factory settings page to the UPS.


At first power on UPS copies user settings to operating RAM and uses these settings. To return factory settings are 2 level process:

- 1- Factory settings are copied to operating RAM
- 2- Operating RAM is copied to user settings

The memory transfer can be done from device calibrator plus software.

DS3-PFC board input and output connections

DS3-PFC Board connectors

	CN1 – contact sense connector		
1	Main board 0 volt	0 volt	
2	Input contactor sense input	Input CB on= 0 volt-off= 3.3 volt	
3	Main board 0 volt	0 volt	
4	Heatsink sensor sense input	Normal= 0 volt –Overtemperature= 3.3 volt DC	

	CN2 –CAN1 port connector		
1	CANL signal input/ output		
2	Isolated 0 volt		
3	CANH sinyal input output		

	CN3 –CAN1 port connector		
1	CANL signal input/ output		
2	Isolated 0 volt		
3	CANH sinyal input output		

	CN5 – PFC rectifier driver board connector		
1	IGBT fault sense input	Normal operation= 0 volt –Alarm =3.3 volt	
3	+8.5 volts DC supply output	+8.5 volts DC	
4	+8.5 volts DC supply output	+8.5 volts DC	
5	PWM4L output	Not used	
6	PWM4H output	Not used	
7	Main board 0 volt	0 volt	
8	Main board 0 volt	0 volt	
9	PWM3L output	0-5 volts square wave	
10	PWM3L output	0-5 volts square wave	
11	PWM3H output	0-5 volts square wave	
12	PWM3H output	0-5 volts square wave	
13	PWM2L output	0-5 volts square wave	
14	PWM2L output	0-5 volts square wave	
15	PWM2H output	0-5 volts square wave	
16	PWM2H output	0-5 volts square wave	
17	PWM1L output	0-5 volts square wave	
18	PWM1L output	0-5 volts square wave	
19	PWM1H output	0-5 volts square wave	
20	PWM1H output	0-5 volts square wave	

	CN8 - RS232 port connector		
1	HF power supply output		
2	HF power supply output		
3	Main board 0 volt	0 volt	
4	Not used		
5	+5 volts DC supply output	+5 volt DC	
6	Main board 0 volt	0 volt	
7	RS232 TX signal output	0-5 volts square wave	
8	Not used		
9	RS232 RX signal input	0-5 volts square wave	
10	Not used		
11	Not used		
12	Not used		
13	Not used		
14	Not used		
15	Not used		
16	Not used		

	CN9 – Input contactor driver connector	
1	1 L1 AC input voltage phase input 220 volts AC	
	(fused)	
2	Input CB drive output	If CB is ON= 220 volts AC – OFF= 0 volt

	CN11 – AC input current measurment connector		
1	+12 volts DC supply output	+12 volts DC	
2	-12 volts DC supply output	-12 volts DC	
3	Main board 0 volt	0 volt	
4	L3 input current sample input	No load 0.85 volts DC	
5	L2 input current sample input	No load 0.85 volts DC	
6	L1 input current sample input	No load 0.85 volts DC	

	CN12 – Battery ambient temperature sensor connector	
1	Temperature sensor signal input	Sensor signal
2	Main board 0 volt	0 volt

	CN13 – HF power supply connector		
1	HF power supply input		
2	HF power supply input		

	CN14 – HF power supply connector		
1	HF power supply input		
2	HF power supply input		

	CN15 – AC input voltage sample connector		
1	Neutral sample input	0 volt	
2	Not used		
3	L3 AC input voltage örneği	220 volts AC	
4	Not used		
5	L2 AC input voltage örneği	220 volts AC	
6	Not used		
7	L1 AC input voltage örneği	220 volts AC	

	CN16 – DC BUS voltage measurement connector		
1	(-)battery voltage sample input	(-)400 VOLTs DC	
2	Not used		
3	Common DC BUS input	0 volt	
4	Not used		
5	(+)battery voltage sample input	(+)400 VOLTs DC	

CN17 optional battery voltage measurement connector

	CN18 – (+)Battery current sample connector		
1	-12 volts DC supply output	-12 volts DC	
2	(+)Batt current sample signal		
3	+12 volts DC supply output	+12 volts DC	

	CN19 – (-)Battery current sample connector	
1	-12 volts DC supply output	-12 volts DC
2	(-)Batt current sample signal	
3	+12 volts DC supply output	+12 volts DC

DS3-DRV IPM driver board

This board is used only at IPM applications if IGBT is used another driver oard is used.

DS3-DRV board is used at rectifier and inverter module there is no difference at two boards. 3 phase IPM modules contains 6 IGBT transistors and their drivers. But main controller board signals must be isolated from IPM module.

Following components are located on DS3-DRV board:

- Output transistor drivers and power supplies •
- Output transistor driver isolators
- IGBT saturation and overtemperature protection signals

	DS3-DRV Board test poits	
TP7 - TP8	15 volts DC	
TP5-TP6	15 volts DC	
TP3-TP4	15 volts DC	
TP1 – TP2	15 volts DC	

DS3-DRV Board special components JP1 jumper

IGBT failure alarm test jumper (not connected)

CN1 – DSP controller board connector		
1	IGBT fault sense output	Normal operation 0V –if alarm = 3.3 V DC
2	Spare digital input	Not used
3	+8.5 volts DC supply input	+9.5V DC
4	+8.5 volts DC supply input	+9.5V DC
5	PWM4L input	Not used
6	PWM4H input	Not used
7	Main board 0 volt	0 volt
8	Main board 0 volt	0 volt
9	PWM3L input	0-5 volts square wave
10	PWM3L input	0-5 volts square wave
11	PWM3H input	0-5 volts square wave
12	PWM3H input	0-5 volts square wave
13	PWM2L input	0-5 volts square wave
14	PWM2L input	0-5 volts square wave
15	PWM2H input	0-5 volts square wave
16	PWM2H input	0-5 volts square wave
17	PWM1L input	0-5 volts square wave
18	PWM1L input	0-5 volts square wave
19	PWM1H input	0-5 volts square wave
20	PWM1H input	0-5 volts square wave

	CN7 – HF power supply connector	
1	HF power supply input	
2	HF power supply input	

	CN8 – L1 upper IGBT drive conector	
1	Isolated power supply GND	
2	L1 upper IGBT saturation protect input	
3	L1 upper pwm drive output	
4	Isolated power supply +15 volts	

	CN9 – L1 upper IGBT drive connector	
5	Isolated power supply GND	
6	L2 upper IGBT saturation protect input	
7	L2 upper pwm drive output	
8	Isolated power supply +15 volts	

	CN10 – L1 upper IGBT drive connector	
5	Isolated power supply GND	
6	L3 upper IGBT saturation protect input	
7	L3 upper pwm drive output	
8	Isolated power supply +15 volts	

	CN11 – Lower IGBT drive connector		
13	Isolated power supply GND		
14	Isolated power supply +15 volts		
15	Pull up resistor pin		
16	L1 PWM Low drive output		
17	L2 PWM Low drive output		
18	L3 PWM Low drive output		
19	Low IGBT common saturation alarm input		

DS3-DRV Board drive signal control

Device calibrator plus software starts test mode at the UPS. An oscilloscope is required for signal following.

DS3-DRV Board replacement

- Return to maintenance by-pass position
- Turn off all switches <0>position
- Wait at least 2 seconds for DC BUS capacitor discharge
- Take off all connectors and take off old board
- Install new board over IPM driver connectors
- Check drive signals with device calibrator plus software
- Turn on UPS again

DS3-IPW Rectifier input relay board

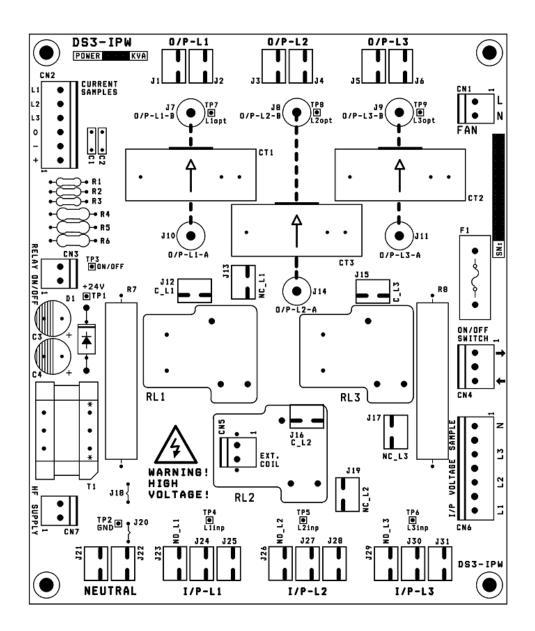
Functions:

- Shutdowns or turns on the rectifier AC input voltage
- Provides AC input voltage samples to rectifier controller board
- Provides AC input current samples to rectifier controller board
- Holds UPS ON/OFF switch fuse

DS3-IPW Board replacement:

According to input power of the UPS some components on this board may be different please notify the UPS power while ordering spare parts.

Replacement procedure of this board is showned at DCP software.


DS3-IPW board test points	
TP1	24 V DC supply
TP2	24 V DC supply GND
TP3	Relay drive +24 volts signal
TP4	L1 phase AC input voltage
TP5	L2 phase AC input voltage
TP6	L3 phase AC input voltage
TP7	L1 phase PFC inductor AC output voltage
TP8	L2 phase PFC inductor AC output voltage
TP9	L3 phase PFC inductor AC output voltage

	CN1 – cooling fan drive output		
1	Phase		
2	Neutral		

	CN2 – AC input current samples to rectifier controller board		
1	+12 V DC supply input		
2	-12 V DC supply input		
3	GND		
4	L3 phase AC input current sample		
5	L2 phase AC input current sample		
6	L1 phase AC input current sample		

	CN3 – Input relays drive input connector	
1	1 +24 V DC output to rectifier controller board	
2	+24 V DC return from rectifier controller board	

	CN4 – UPS ON/OFF switch fuse connector		
1	Input		
2	Not used		
3	Output		

CN5 – External relay connector		
1	+24 V DC drive output	
2	isolated GND	

	CN6 – Rectifier AC voltage samples connector		
1	Neutral		
2	Not used		
3	L3 phase AC input voltage sample		
4	Not used		
5	L2 phase AC input voltage sample		
6	Not used		
7	L1 phase AC input voltage sample		

CN7 – HF power supply connector HF power supply HF power supply

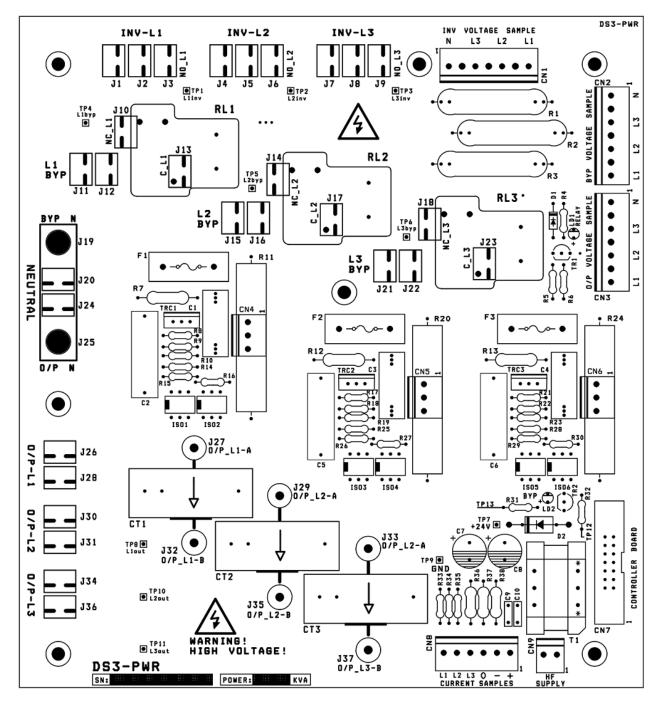
	Other power connections			
J1	L1 phase PFC inductor output	After current measurement		
J2	L1 phase PFC inductor output	After current measurement		
J3	L2 phase PFC inductor output	After current measurement		
J4	L2 phase PFC inductor output	After current measurement		
J5	L3 phase PFC inductor output	After current measurement		
J6	L3 phase PFC inductor output	After current measurement		
J12	L1 phase relay output	Reserved for future use		
J13	L1 phase relay reverse contact	Reserved for future use		
J15	L3 phase relay output	Reserved for future use		
J16	L2 phase relay output	Reserved for future use		
J17	L3 phase relay reverse contact	Reserved for future use		
J19	L2 phase relay reverse contact	Reserved for future use		
J21	Neutral			
J22	Neutral			
J23	L1 phase AC voltage input	Reserved for future use		
J24	L1 phase AC voltage input			
J25	L1 phase AC voltage input			
J26	L2 phase AC voltage input	Reserved for future use		
J27	L2 phase AC voltage input			
J28	L2 phase AC voltage input			
J29	L3 phase AC voltage input	Reserved for future use		
J30	L3 phase AC voltage input			
J31	L3 phase AC voltage input			

DS3-PWR Output relay and by-pass board

Function of this board:

2

• Provides ac by-pass voltage, inverter output voltage , UPS output voltage and UPS output current samples to the DS3-INV board


- Drives By-pass relays
- Drives and isolates By-pass triacs

DS3-IPW Board replacement:

According to input power of the UPS some components on this board may be different please notify the UPS power while ordering spare parts.

Replacement procedure of this board is showned at DCP software.

DS3-PWR Board special components		
LD1 By-pass relay indicator lamp (green)		
LD2 By-pass triac indicator lamp (red)		
F1 L1 phase triac fuse		
F2 L2 phase triac fuse		
F3	L3 phase triac fuse	

	DS3-PWR Board test points	
TP1	L1 phase inverter output voltage	
TP2	L2 phase inverter output voltage	
TP3	L3 phase inverter output voltage	
TP4	L1 phase by-pass input voltage	
TP5	L2 phase by-pass input voltage	
TP6	L3 phase by-pass input voltage	
TP8	L1 phase UPS output voltage	
TP10	Image: TP10 L2 phase UPS output voltage	
TP11	L3 phase UPS output voltage	
TP12 Triac drive transistor input		
TP13	TP13 Triac drive optical couplers common point	
TP14	Relay drive transistor input	

	CN1 Inverter main controller board Inverter output voltage samples		
1	Neutral		
2	Not used		
3	L3 phase inveter AC output voltage sample		
4	Not used		
5	L2 phase inveter AC output voltage sample		
6	Not used		
7	L1 phase inveter AC output voltage sample		

	CN2 Inverter main controller board By-pass input voltage samples		
1	Neutral		
2	Not used		
3	L3 phase by-pass input voltage sample		
4	Not used		
5	L2 phase by-pass input voltage sample		
6	Not used		
7	L1 phase by-pass input voltage sample		

	CN3 Inverter main controller board UPS output voltage samples		
1	Neutral		
2	Not used		
3	L3 Phase UPS output voltage sample		
4	Not used		
5	L2 Phase UPS output voltage sample		
6	Not used		
7	L1 Phase UPS output voltage sample		

CN4 : L1 phase optional by-pass inductor connector

CN5 : L2 phase optional by-pass inductor connector

CN6 : L3 phase optional by-pass inductor connector

	CN7 Inverter Main controller board signal connector					
1	By-pass relay drive input					
2	Not used					
3	Not used					
4	GND					
5	Not used					
6	Not used					
7	Not used					
8	GND					
9	Not used					
10	Not used					
11	Triac drive input					
12	GND					
13	+5 V DC power supply input					
14	+5 V DC power supply input					

	CN8 Inverter main controller board UPS output current samples						
1	+12 V DC power supply input						
2	-12 V DC power supply input						
3	GND						
4	L3 phase UPS output current sample						
5	L2 phase UPS output current sample						
6	L1 phase UPS output current sample						

	CN9 – HF power supply bağlantı soketi pin görevleri					
1	HF power supply input					
2	HF power supply input					

D	• 4		4
Ky-nass	Innif	nower	connectors
Dy-pass	mput	power	connectors

J11	L1 phase by-pass input voltage
J12	L1 phase by-pass input voltage
J15	L2 phase by-pass input voltage
J16	L2 phase by-pass input voltage
J21	L3 phase by-pass input voltage
J22	L3 phase by-pass input voltage
J24	Neutral
J25	Neutral

	Inverter output voltage power connectors					
J1	L1 phase inverter output voltage					
J2	L1 phase inverter output voltage					
J4	L2 phase inverter output voltage					
J5	L2 phase inverter output voltage					
J7	L3 phase inverter output voltage					
J8	L3 phase inverter output voltage					
J24	Neutral					
J25	Neutral					

	UPS output voltage power connectors					
J26	L1 phase UPS output voltage					
J28	L1 phase UPS output voltage					
J30	L2 phase UPS output voltage					
J31	L2 phase UPS output voltage					
J34	L3 phase UPS output voltage					
J36	L3 phase UPS output voltage					
J24	Neutral					
J25	Neutral					

ITC-03 Front panel adaptör board

Functions:

- Arranges data way from front panel to CAN1 data bus
- Measures cabinet inside temperature
- Provides data connection from RS232 board to front panel controller board
- Provides power to front panel boards
- Connects DRY contact relay drive signals to RS232 communication board

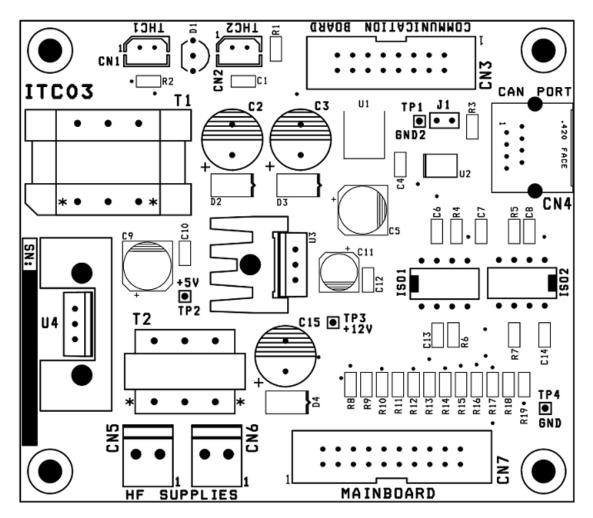
J1 jumper on this board enables or disables the CAN1 BUS line end resistor

ITC-03 Board replacement:

There is no need any adjustment during board replacement. Turn off the UPS replace the board and turn on UPS again.

Replacement procedure of this board is showned at DCP software

ITC-03 Board tesp points					
TP1	+5 volts DC CAN1 supply GND				
TP3	+12 volts DC relay supply (TP4 GND)				
TP4	+5 volts isolated front panel supply GND				


There is no any other test point on this board if required measure signals on component pins directly

	CN1 – TH1 Thermal sensor connector					
1	GND					
2	Canlı pin					

	CN2 – TH2 cabinet inside thermal sensor connector										
1	GND										
2	Canlı pin										
	<u> </u>						1	.1		 •	1

Note: Normally cabinet inside temperature sensor is mounted on this board but some applications external sensors are required in this case disconnect the sensor on PCD and connect an external sensor to this connector

	CN3 RS232 communication board connector
1	HF power supply output
2	HF power supply output
3	GND (front panel GND)
4	+12 V DC supply output
5	+5 V DC supply output
6	GND (front panel GND)
7	RS232 TXD output
8	REPO stop signal input from RS232 board
9	RS232 RXD input
10	AUX1 relay drive output
11	SNMP-RS232 data way selection relay drive output
12	Line failure alarm relay drive output
13	Spare digital input
14	Battery low alarm relay drive output
15	AUX2 relay drive output
16	By-pass alarm relay drive output

	CN4 – CAN1 data line connector						
1	CAN1-L						
2	GND						
3	CAN1-H						

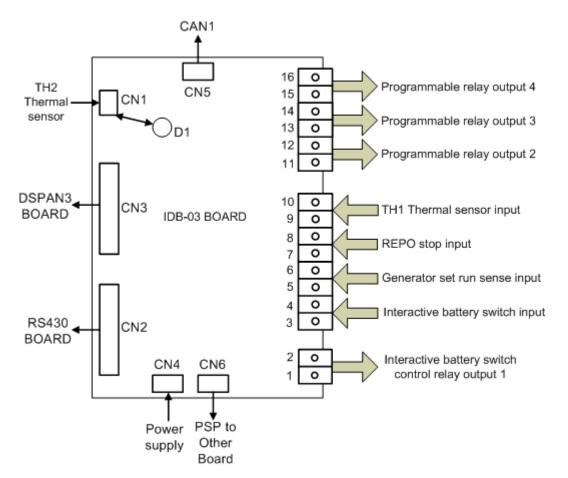
Warning! If this connector is unplugged the data connection from front panel to other boards are interrupted.

	CN5 – HF power supply connector			
1 HF power supply input				
2 HF power supply input				

Warning! If this connector unplugged power of the RS232 board or front panel board is shutdown

	CN6 – HF power supply connector			
1	HF power supply input			
2	HF power supply input			
		1 1 C.1 D		

Warning! If this connector unplugged power of the RS232 board or front panel board is shutdown


	CN7 Front panel controller board connector
1	Not used
2	AUX2 relay drive input
3	RS232 RX2
4	RS232 TX2
5	CAN1 TX
6	CAN1 RX
7	Not used
8	Spare digital input signal
9	AUX1 relay drive input
10	Line failure relay drive input
11	By-pass relay drive input
12	Battery low relay drive input
13	SNMP/RS232 data way selection relay drive input
14	TH1 thermal sensor signal
15	TH2 thermal sensor signal
16	Not used
17	REPO (EMC) stop output
18	+12 V DC supply output
19	GND
20	+5 V DC supply output

IDB-03 Interface board

IDB-03 Board isolates communication data from outside world. All signal from this board are isolated.

IDB-03 Board replacement:

There is no need any adjustment during board replacement. Turn off the UPS replace the board and turn on UPS again.

On the board D1 thermal sensor is located ,this sensor measures the cabinet inside temperature. If the cabinet inside temperature sensor is located another part of the cabinet D1 sensor not used another sensor is connected to CN1 connector.

CN1 – Thermal sensor 2 connector		
1	0 volt	
2	Sensor signal input	

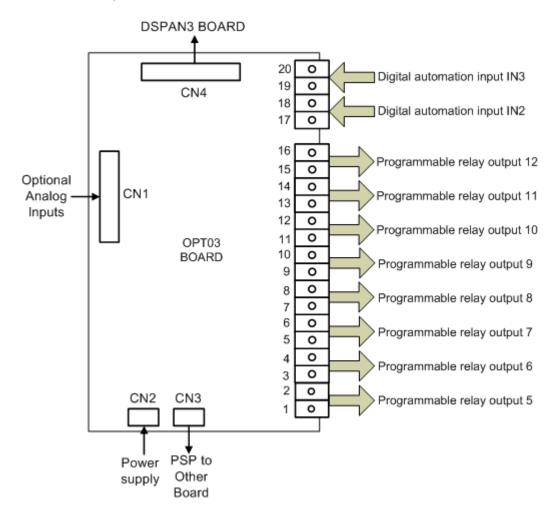
	CN2 – RS232 communcation board connector		
1	TX1		
2	RX1		
3	ISO1 - 0 volt		
4	TX2		
5	RX2		
6	ISO1 - 0 volt		
7	+5 volts ISO1 isolated supply output		
8	+5 volts ISO1 isolated supply output		
9	TP2 0 volt		
10	TP2 0 volt		
11	TP3 + 5 volts DC		
12	TP3 + 5 volts DC		
13	Com1 SNMP/RS232 select signal		
14	TP1 +10 volts DC supply output		

	CN3 – Panel DSP board connector		
1	RS232-RX1 output		
2	RS232-TX1 input		
3	RS232-RX2 output		
4	RS232-TX2 input		
5	CAN1 TX input		
6	CAN1 RX output		
7	Batt.switch sense output		
8	generatör sense output		
9	Relay 1 drive input		
10	Relay 2 drive input		
11	Relay 3 drive input		
12	Relay 4 drive input		
13	Com1 SNMP/RS232 select input		
14	Thermal sensor 1 output		
15	Thermal sensor 2 output		
16	Not used		
17	REPO stop signal output		
18	TP1 +12 volts DC supply output		
19	TP2 0 volt		
20	TP3 +5 volts DC		

	CN4 – HF power supply connector		
1	HF power supply input		
2	HF power supply input		

	CN6 – HF power supply connector		
1	HF power supply input		
2	HF power supply input		

	CN5 – CAN1 connector		
1	CANL signal		
2	0 volt		
3	CANH signal		


IDB-03 Board test points		
TP2(GND) –TP3	+5 volts DC	
U3 pin2 (GND) – U3 pin3	+5 volts DC	
U4 pin2 (GND) – U4 pin3	+5 volts DC	
CN8 pin7(GND) – D4 cathode	+12 volts DC	
TP2 GND - TP	+10 volts DC	
D1 temp sensor pins	If sensor connected= 2.9 volt DC	

OPT03 OPTIONAL INTERFACE BOARD

The standart configuration of DS|POWER series UPS is 4 dry contact outputs ,with optional interface board these relays will be total 12 relays ,seperately 6 analog inputs and 2 digital automation inputs are available

OPT03 Board replacement:

There is no need any calibration or adjustment during board replacement. Turn off the UPS replace the board and turn on UPS again.

	CN1 – Optional analog input connector		
1	+5 volts DC supply output	+5 volt DC	
2	0 volt	0 volt	
3	Analog input 8		
4	Analog input 7		
5	Analog input 6		
5	Analog input 5		
7	Analog input 4		
8	Analog input 3		
9	0 volt	0 volt	
10	0 volt	0 volt	

	CN2 – HF power supply connector		
1	HF power supply besleme input		
2	HF power supply besleme input		

	CN3 – HF power supply connector				
1	HF power supply supply input				
2	HF power supply supply input				

	CN4 – Panel DSP board connector				
1	Analog output 3				
2	Analog output 4				
3	Analog output 5				
4	Analog output 6				
5	Analog output 7				
6	Analog output 8				
7	Option relay 5 drive input				
8	Option relay 6 drive input				
9					
10	0 Option relay 8 drive input				
11	1 Option relay 9 drive input				
12	2 Option relay 10 drive input				
13	3 Option relay 11 drive input				
14	4 Option relay 12 drive input				
15	5 Digital automation output IN2				
16	6 Digital automation output IN3				
17	7 0 volt supplye input				
18	8 +5 volts DC supply input				
19	9 Not used				
20	0 Not used				

OPT03 Board test points		
TP3(GND) –TP2	+12 volts DC	
U1 pin2 (GND) – U1 pin3	+5 volts DC	

DSPAN03 Front panel DSP control board

All front panel functions are managed the DSP which is located on this board.

DSPAN03 Board replacement:

There is no need any adjustment or calibration during panel board replacement. Turn off the UPS ,take off old board and install new board. The turn on UPS again.

CN1 DSP programming connector

	CN2 – FP1 Panel board connector				
1	CD_RS				
2	CD_E				
3	Not used				
4	CD_D0				
5	CD_D1				
6	CD_D2				
7	CD_D3				
8	CD_D4				
9	CD_D5				
10	CD_D6				
11	OPT1				
12	CD_D7				
13	OPT2				
14	BACKLIGHT				
15	Not used				
16	CONTRAST				
17	+5 volts DC panel supplyoutput				
18	+5 volts DC panel supply output				
19	To Panel 0 volt				
20	To Panel 0 volt				
21	Not used				
22	Not used				
23	Not used				
24	Not used				
25	Not used				
26	Not used				

	CN3 – FP1 Panel board connector
1	Panel LED2 drive output
2	Not used
3	Not used
4	Panel LED1 drive output
5	+3.3 volts supply output
6	+3.3 volts supply output
7	To Panel buzzer output
8	Not used
9	To panel 0 volt output
10	To panel 0 volt output
11	OPT3
12	OPT4
13	OPT5
14	OPT6
15	OPT7
16	SW1 buton input
17	SW2 buton input
18	SW3 buton input
19	SW4 buton input
20	SW5 buton input

	CN4 – IDB03 interface board connector		
1	RS232-RX1 input		
2	RS232-TX1 output		
3	RS232-RX2 input		
4	RS232-TX2 output		
5	CAN1 TX output		
6	CAN1 RX input		
7	Batt.sitch sense input		
8	generatör set sense input		
9	Relay 1 drive output		
10	Relay 2 drive output		
11	Relay 3 drive output		
12	Relay 4 drive output		
13	Com1 SNMP/RS232 select output		
14	Thermal sensor 1 input		
15	Thermal sensor 2 input		
16	Not use		
17	REPO stop signal input		
18	TP1 +12 volts DC supply input		
19	TP2 0 volt		
20	TP3 +5 volts DC upply input		

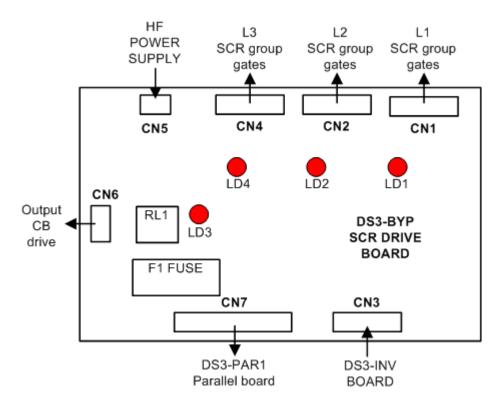
	CN5 – OPT03 option board connector		
1	Analog input 3		
2	Analog input 4		
3	Analog input 5		
4	Analog input 6		
5	Analog input 7		
6	Analog input 8		
7	Option relay 5 drive output		
8	Option relay 6 drive output		
9	Option relay 7 drive output		
10	Option relay 8 drive output		
11	Option relay 9 drive output		
12	Option relay 10 drive output		
13	Option relay 11 drive output		
14			
15	Digital otomation input IN2		
16	Digital otomation input IN3		
17			
18	+5 volt DC supply output		
19	Not used		
20	Not used		

DSPAN03 Board test points		
TP10(GND) –TP11	+5 volts DC	
TP10(GND) –TP13	+3.3 volts DC	
TP10(GND) –TP12	0 volt DC	
TP12(GND) –TP2	If TH1 connected = 1.9 V- not connected= 2.35 V	
TP12(GND) –TP3	If TH1 connected = 1.9 V- not connected= 2.35 V	
TP12(GND) –TP4	Different according to option	
TP12(GND) –TP5	Different according to option	
TP12(GND) –TP6	Different according to option	
TP12(GND) –TP7	Different according to option	
TP12(GND) –TP8	Different according to option	
TP12(GND) –TP9	Different according to option	
U4 pin 10 (GND) – U4 pin 20	+5 volts DC	
U5 pin 10 (GND) – U5 pin 20	+5 volts DC	
U6 pin 10 (GND) – U6 pin 20	+5 volts DC	
U2 pin 5 (GND) – U2 pin 10	+5 volts DC	
TP10(GND) –TP1 arası	+12 volts DC	
BT1 battery teminals	3.6 volts DC	

DSPAN03 Board DSP firmware update At firmware updates of the front panel replace DCPAN03 board with a new version.

FP1 LCD Panel adaptor board

LCD Alphanumeric display and mimic panel lamps are located on this board and lamp buffers are on this board.


DSPAN03 Board is integrates to this board with connectors without cable.

If any problem on mimic lamps or LCD display replace this board with a new one.

DS3-BYP By-pass driver board

Functions of this board:

- Isolation of the DS3-INV by-pass SCR drive signals from SCR's
- Isolation of the DS3-INV output CB drive signal
- To arrange power on SCR drive signals
- To prevent cross currents between UPS's during paralel operation

DS3-BYP board special components	
LD1	L1 by-pass SCR drive pulse monitor lamp
LD2	L2 by-pass SCR drive pulse monitor lamp
LD3	Output CB drive relay on monitor lamp
LD4	L4 by-pass SCR drive pulse monitor lamp
F1	Output CB coil fuse
RL1	Output CB drive relay

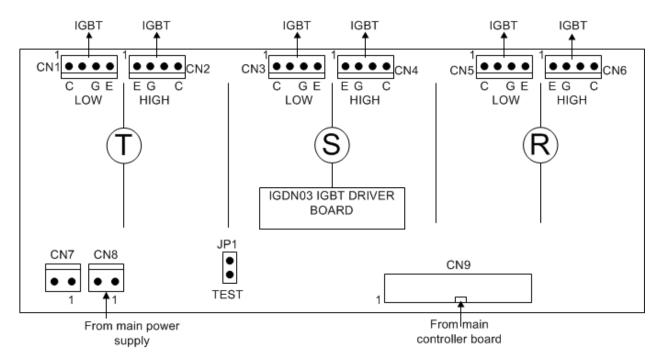
CN1 –L1 SCR gate drive connector		
1	L1 SCR G1 pin	Gate
2	L1 SCR K1 pin	Katod
3	Not used	
4	L1 SCR G2 pin	Gate
5	L1 SCR G2 pin	Katod

CN2 –L2 SCR gate drive connector		
1	L1 SCR G3 pin	Gate
2	L1 SCR K3 pin	Catode
3	Not used	
4	L1 SCR G4 pin	Gate
5	L1 SCR G4 pin	Katod

	CN3 – BYP-INV DSP control board connector		
1	Output CB drive signal input	Output CB off 0V - on +5V DC	
2	DOUT-2 spare input	Not used	
3	DOUT-1 spare input	Not used	
4	Main board ground	0 volt	
5	L3 inverter SCR drive input	Not used	
6	L2 inverter SCR drive input	Not used	
7	L1 inverter SCR drive input	Not used	
8	Main board ground	0 volt	
9	L3 by-pass SCR drive input	On inverter 0V – on by-pass +5V DC	
10	L2 by-pass SCR drive input	On inverter 0V – on by-pass +5V DC	
11	L1 by-pass SCR drive input	On inverter 0V – on by-pass +5V DC	
12	Main board ground	0 volt	
13	+5 volt DC PSP input	+5 volt DC	
14	+5 volt DC PSP input	+5 volt DC	

CN4 –L3 SCR gate drive connector		
1	L1 SCR G5 pin	Gate
2	L1 SCR K5 pin	Katod
3	Not used	
4	L1 SCR G6 pin	Gate
5	L1 SCR G6 pin	Katod

	CN5 – HF power supply input connector		
1	HF power supply input	-	
2	HF power supply input	-	


	CN6 – Output CB drive connector	
1	AC 220 volts input (FUSED)	
2	AC 220 volts output	

	CN7 – DS3-PAR paralel communication board connector		
1	HF power supply output	-	
2	HF power supply output	-	
3	HF power supply output	-	
4	HF power supply output	-	
5	Not used		
6	Not used		
7	Not used		
8	Not used		
9	Not used		
10	Not used		
11	Not used		
12	Not used		
13	Load on inverter security output		
14	Load on inverter security output		
15	Any UPS inverter feeds the load sense input		
16	Any UPS inverter feeds the load sense input		

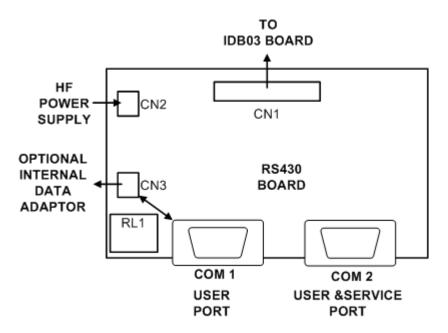
IGDN03 IGBT Driver board

Functions of the IGDN03 Driver board:

- Isolates main controller board drive signals from power components
- To send drive signals to driver modules
- To interface driver signals and to drive power components
- To sense saturation alarm of the IGBT transistors and send signals to main controller board

IGDN03 Board replacement:

Warning ! During board order send information to factory about UPS power ,because according to UPS power some components on IGDN03 board will be different. Serial number of the UPS is enough. There is no need any adjustment during replacement. Turn off UPS Take off old board Install new board Before start UPS check CN1,CN2,CN3,CN4,CN5,CN6 connectors are plugged in to correct IGBTS.

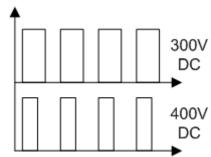

RS430 serial RS232 communication board

RS430 Serial communication board isolates data signals from outside World of the UPS ,drives RS232 BUS. Two serial ports are available on board. Com1 port is user port and it is shared with internal data adaptors such as SNMP or MODBUS adaptör. RL1 relay on board changes data way to RS232 port or data adaptör.

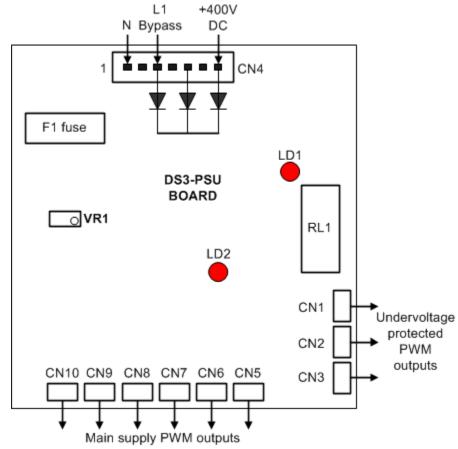
If the relay is OFF data will be redirected to COM1 port ,CN3 connector is not used in this position. If relay is ON data is redirected to CN3 connector in this position COM1 port is out of function. The relay is managed from DSP control panel

RS430 Board replacement:

Any adjustment is not necessary if this board is replaced with a new board. Turn off UPS ,take off old board and install new board. Turn on UPS again.



	CN1 – RS232 IDB03 board connector pin functions		
1	TX1		
2	RX1		
3	ISO1 - 0 volt		
4	TX2		
5	RX2		
6	ISO1 - 0 volt		
7	+5 volts ISO1 isolated supply input		
8	+5 volts ISO1 isolated supply input		
9	IDB03 Board TP2 0 volt		
10	IDB03 Board TP2 0 volt		
11	IDB03 Board TP3 + 5 volts DC		
12	IDB03 Board TP3 + 5 volts DC		
13	Com1 SNMP/RS232 select relay drive out		
14	IDB03 Board TP1 +10 volts DC supply out		


RS430 Board test points		
U1 pin2 (GND) – U1 pin1	+10.5 volts DC	
U1 pin2 (GND) – U1 pin3	+5 volts DC	
U2 pin 15 (GND) – U1 pin16	+ 5 volts DC	
U3 pin 15 (GND) – U3 pin16	+ 5 volts DC	

All boards of the UPS are powered from main power supply board Main functions of the board is:

- Supply fuse protection
- To produce high frequency PWM energy
- Undervolage power supply shutdown function
- To regulate all board supply signals
- To get power from by-pass input
- To monitor supply status from LED lamps

This board produces PWM regulated power and sends this signal to other boards as power supply, each board has it's own isolation transformer. At the output of the transformer there are DC voltage regulators. At this application power supplies are isolated. The figure shows how the board regulates PWM signal according to different DC BUS voltages. If DC voltage is low PWM signal is longer.

LD1	There is PWM at the undervoltage protected connectors
LD2	Main supply is running
F1	Board power input fuse
VR1	Main supply voltage adjustment
RL1	Underoltage shutdown relay

DS3-PSU Board test points	
CN4 pin1 (GND) – pin7	+405 volts DC
CN4 pin1 (GND) – pin3	220 volts AC

If the UPS is on ,power will be applied to the power input connector and board produze PWM rregulated signal in this case LD2 lamp is ON.

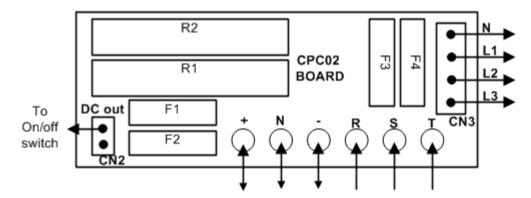
If the DC BUS voltage is higher then 200 volts DC RL1 relay is on ,LD1 lamp is on . If the relay is on PWM supply comes to undervoltage protected connectors.

By-pass L1 phase input is connected to the input power of the power supply board ,so only by-pass is enough for power supply operation

	CN4 – Power input connector		
1	Neutral		
2	Not used		
3	L1 bypass input		
4	Not used		
5	Not used		
6	Not used		
7	DC BUS input		

	CN1,CN2,CN3 – Undervoltage protected PWM outputs		
1	HF power supply output	Can not measure with multimeter	
2	HF power supply output	Can not measure with multimeter	

	CN5,CN6,CN7,CN8,CN9,CN10 – Direct PWM outputs		
1	HF power supply output	Can not measure with multimeter	
2	HF power supply output	Can not measure with multimeter	


CPC-02 DC BUS Capacitor charge board

If the DC BUS voltage is zero if energy applied to DC BUS very high current passes through DC BUS capacitors. To prevent this current CPS-02 DC BUS soft charge board is used. This board is used at early versions of the DS|POWER series UPS at last versions this board usage cancelled.

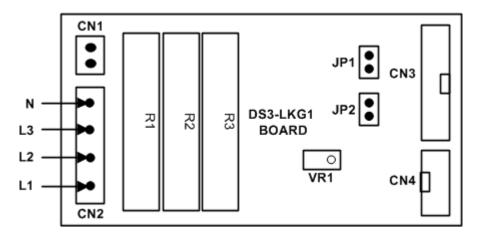
Function of CPC-02 board

- To provide soft charge of the DC BUS capacitors
- To provide DC voltage to on/off switch
- Fuse protection at high currents
- To provide AC input voltage samples to DS3-PFC Board

	CPC-02 Board components		
F1	(-) DC BUS protection fuse		
F2	(+) DC BUS protection fuse		
F3	R phase AC input protection fuse		
F4	S phase AC input protection fuse		
R1	(+)DC BUS capacitor charge resistor		
R2	(-)DC BUS capacitor charge resistor		

	CN3 AC input voltage sample connector		
1	Neutral sample		
2	not used		
3	L1 Phase AC voltage sample		
4	not used		
5	L2 Phase AC voltage sample		
6	not used		
7	L3 Phase AC voltage sample		

	CN2 On/off switch DC supply output		
1	not used		
2	DC output		


DS3-LKG1 IGBT Leakage sense board

DS3-LKG1 board sense the returning DC BUS voltage from PFC rectifier power components , if there is a DC leakage at the rectifier power components it prevents to start rectifier.

The function of the DS3-LKG1 Board:

- To measure the DC leakage of the rectifier power components
- If there is leakage it prevents rectifier start

	DS3-LKG1 Board special components
R1-R2-R3	Leakage compansiation resistors
VR1	Reference adjustment (factory setting)
JP1-JP2	Supply jumpers (JP2 SHORTED)

CN1 HF PWM Power supply input connector (not used)

	CN2 DC leakage sense input connector		
1	L1 phase leakage sample		
2	not used		
3	L2 phase leakage sample		
4	not used		
5	L3 phase leakage sample		
6	not used		
7	Neutral sample		

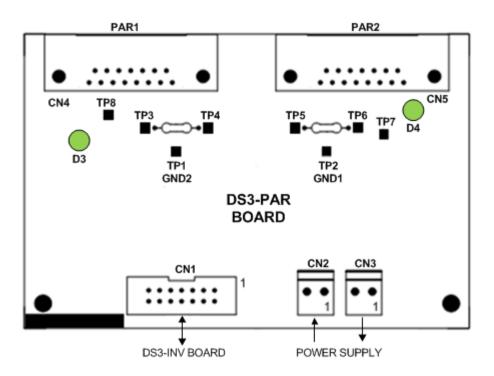
CN3 DSPAN-03 Board connector

CN4 OPT03 Board connector

Replacement of the DS3-LKG1 Board

There is no different component on this board according to different power ranges and models you can give only board name during order.

DS3-PAR Parallel communication board


DS3-PAR board is optional if parallel UPS system will be used this board must be installed into the each UPS in parallel system.

Board Functions:

- Provides communication in parallel UPS system
- Isolates UPS to UPS parallel communication signals
- Interfaces parallel communication signals ,prevents noise interference

DS3-PAR Board special components	
R17	1. data line load resistor
	2. data line load resistor
D3	ISO2 power supply control lamp
D4	ISO1 power supply control lamp

DS3-PAR Board test points	
TP1	ISO2 power supply ground
TP2	ISO1 power supply ground
TP3	1. data line test point B
TP4	1. data line test point A
TP5	2. data line test point A
TP6	2. data line test point B
TP7	ISO1 power supply + 5 volts
TP8	ISO2 power supply + 5 volts

	CN1 DS3-INV Main control board connection connector pins
1	2.data line RX signal
2	2.data line TX signal
3	Main board ground
4	1.data line RX signal
5	1.data line TX signal
6	1.data line direction
7	Main board ground
8	1.parallel connector plugin sense
9	Main board +5 volt supply
10	Main board ground
11	not used
12	not used
13	2.parallel connector plugin sense
14	2.data line direction

	CN2 – HF power supply connector pin functions		
1	HF power supply input	Can not measure	
2	HF power supply input	Can not measure	

	CN3 – HF power supply connector pin functions	
1	HF power supply input	Can not measure
2	HF power supply input	Can not measure

	CN4 – PARALLEL communication connector
1	1.data line B signal
2	ISO2 supply ground
3	1.data line A signal
4	not used
5	not used
6	2.data line A signal
7	ISO1 supply ground
8	2.data line B signal
9	not used
10	not used
11	not used
12	not used
13	not used
14	ISO2 supply +5 volt output
15	PAR1 connector plugin sense input

	CN5 – PARALLEL communication connector
1	1.data line B signal
2	ISO2 supply ground
3	1.data line A signal
4	not used
5	not used
6	2.data line A signal
7	ISO1 supply ground
8	2.data line B signal
9	not used
10	not used
11	not used
12	not used
13	not used
14	ISO1 supply +5 volt output
15	PAR2 connector plugin sense input

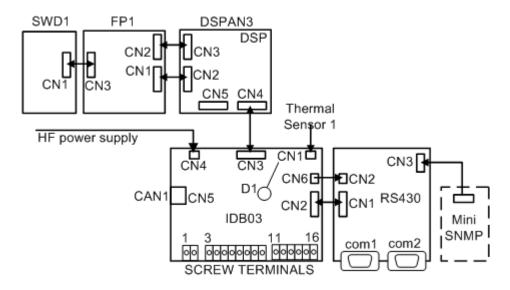
Replacement of the DS3-PAR Board There is no different component on this board according to different power ranges and models you can give only board name during order. After replacement there is no need to any adjusment

FRONT PANEL OPTIONS

Front panel module functions

- Drives 4x20 characters LCD alphanumeric panel
- Drives optional graphical LCD front panel
- Controls the front pane button functions
- Controls the mimic panel lamps
- Sends fro panel commands to the related modules
- Sends adjustments from front panel to related modules
- Sends RS232 commands and adjustments to other modules
- Creates alarm messages
- Supports MEGATEC communication protocol
- Supports T-MON communication protocol
- Records alarms and theie dates and times
- Controls RTC clock
- Manages dry contact alarm relays
- Manages temperature sensors
- Manages operating and maintenance hourmeters
- Manages optional interface board functions
- Manages interactive battery switch
- Manages REPO input
- Manages sound buzzer functions
- Supports SNMP adaptör protocol
- Supports MODBUS adaptör protocol
- Manages remote monitoring panel
- Communicates with **Device calibrator plus** software
- Sends logs to the outside World over RS232 port
- Sends fault profile over RS232 port

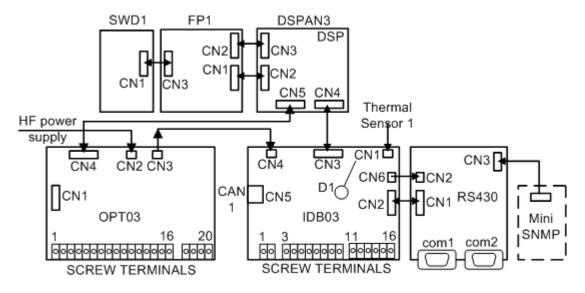
All front panel applications are as follows:


- 4x20 alphanumeric LCD ,5 buttons ,mimic panel (standart)
- 4x20 alphanumeric LCD,5 buttons and option board (optional)
- Graphical LCD panel ,5 buttons (optional)
- Graphical LCD touch panel (optional)

Standart panel is 4x20 characters LCD other configurations are available for special order.

The following options are available for front panel

Alphanumeric 4x20 characters alphanumeric front panel application


This application is standart for DS|POWER series UPS

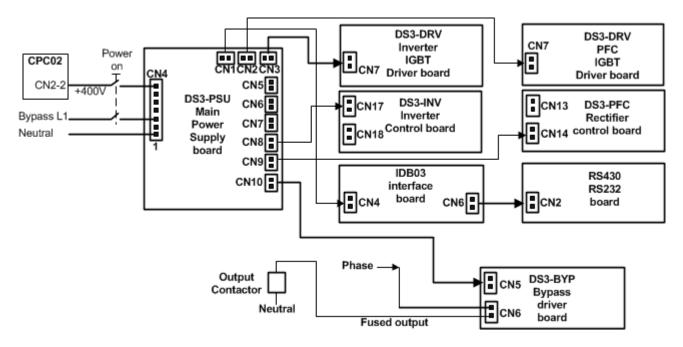
Uygulama ile cihazda elde edilen kullanıcı arabirimleri aşağıda listelenmiştir:

- a) 2 RS232 serial ports
- b) Optional SNMP adaptör support
- c) Optional MODBUS adaptör support
- d) Remote monitoring panel support
- e) 1 interactive battery switch position sense input
- f) 1 interactive battery switch coil drive output
- g) 1 REPO stop input
- h) 1 generator set sense input
- i) 1 external temperature sensor input
- j) 3 function programmable relay outputs
- k) 4 x20 character LCD alphanumeric panel
- l) 5 control buttons
- m) Mimic panel lamps
- n) Sound buzzer
- o) MEGATEC protocol support
- p) T-MON protocol support

This application is good for some automation and during UPS order you must order this option.

With option board the follwing functions are available

- a) 2 RS232 serial ports
- b) Optional SNMP adaptor connection
- c) Optional MODBUS adaptor connection
- d) Remotre monitoring panel
- e) 1 interactive battery switch position sense input
- f) 1 interactive battery switch coil drive output
- g) 1 REPO button input
- h) 1 optional external temperature sensor
- i) 1 generator set sense input
- j) 2 digital automation inputs
- k) 3+8 function programmable relay outputs
- 1) 4 lines 20 characters LCD alphanumeric panel
- m) 5 control buttons
- n) Mimic panel lamps
- o) 6 analog inputs
- p) Sound buzzer
- q) MEGATEC protocol support
- r) T-MON protocol support


UPS POWER SUPPLY

The main power supply is PWM waveform output ,these PWM goes to each PCB board seperately. Each board has its own isolation transformer and it converts PWM signal to DC these structure prevents interferance between boards.

Topology 1 – IPM– CPC02 Board type application power supply distrubution

At early versions of the DS|POWER series CPC02 DC BUS charge board is used at this type of application the following figure shows power supply distribution.

Note : At topology 1, 6 SCR's,1 output contactor for bypass and batteries are connected to DC BUS directly.

WARNING ! During board replacement please make power supply connections according to the figure

Firmware update directions

DS3-INV or DS3-PFC board DSP chips are located on small DPIM-1 DSP board if firmware update is required new DPIM-1 board will be replace.

Update reasons

- DSP chip is burned out
- New DSP firmware software is in progress

Maket he following while DPIM-1 board replacement

- All adjustments are on DS3-INV or DS3-PFC board changing DPIM-1 board doesn't change adjustments.
- Turn off the UPS
- Turn off all switches <0>position
- Wait at least 2 minutes for DC BUS capacitor discharge
- Take off DPIM-1 board from DS3-INV or DS3-PFC board
- Check new DPIM-1 board is for inverter or rectifier
- Plug new DPIM-1 board on to the main board be carefull the board direction must be same
- WARNING ! All pins must be plugged in please check again